Progress in Research on Microplastics and Nano-plastics Cardiac Toxicity
DOI:
https://doi.org/10.64135/advadolesc.2025.02.01Keywords:
Microplastics, Cardiovascular Toxicity, Biomarkers, Detection MethodsAbstract
In recent years, research on the biological toxicity of microplastics and nano-plastics has emerged in the medical field, especially with rapid progress in studies related to cardiovascular diseases. However, it should be objectively noted that the amount of clinical data from international research remains limited, while domestic research in related fields with access to clinical data sources is extremely scarce, and in-depth clinical investigations and research advances are urgently needed. This review summarizes the progress of studies on the cardiovascular toxicity of microplastics. Based on domestic and international basic research and the factually limited clinical research, it elaborates on the mechanisms of cardiovascular toxicity induced by microplastics, their biomarkers, and detection methods. Emphasis is placed on detection methods for direct evidence of biological origin and biomarkers, aiming to provide a reference for subsequent data collection in clinical research stages.
References
[1] Yuan Z, Nag R, Cummins E. Human health concerns regarding microplastics in the aquatic environment - From marine to food systems. Sci Total Environ. 2022 Jun 1;823:153730. doi: 10.1016/j.scitotenv.2022.153730. Epub 2022 Feb 7. PMID: 35143789.
[2] Prata JC, da Costa JP, Duarte AC, Rocha-Santos T. Suspected microplastics in Atlantic horse mackerel fish (Trachurus trachurus) captured in Portugal. Mar Pollut Bull. 2022 Jan;174:113249. doi: 10.1016/j.marpolbul.2021.113249. Epub 2021 Dec 22. PMID: 34953263.
[3] Ma Zhanfeng, Niu Guoqiang, Lu Shan. China's Plastics Processing Industry (2022) [J]. China Plastics, 2023, 37(05):110-115. DOI:10.19491/j.issn.1001-9278.2023.05.017.
[4] Wu D, Feng Y, Wang R, Jiang J, Guan Q, Yang X, Wei H, Xia Y, Luo Y. Pigment microparticles and microplastics found in human thrombi based on Raman spectral evidence. J Adv Res. 2023 Jul;49:141-150. doi: 10.1016/j.jare.2022.09.004. Epub 2022 Sep 15. PMID: 36116710; PMCID: PMC10334115.
[5] Ding J, Zhang S, Razanajatovo RM, Zou H, Zhu W. Accumulation, tissue distribution, and biochemical effects of polystyrene microplastics in the freshwater fish red tilapia (Oreochromis niloticus). Environ Pollut. 2018 Jul;238:1-9. doi: 10.1016/j.envpol.2018.03.001. Epub 2018 Mar 9. PMID: 29529477.
[6] Lusher, A.L., Welden, N.A., Sobral, P., Cole, M., 2017. Sampling, isolating and identifying microplastics ingested by fish and invertebrates. Anal. Methods. 9 (9), 1346–1360.
[7] Zhang R, Wang M, Chen X, Yang C, Wu L. Combined toxicity of microplastics and cadmium on the zebrafish embryos (Danio rerio). Sci Total Environ. 2020 Nov 15;743:140638. doi: 10.1016/j.scitotenv.2020.140638. Epub 2020 Jun 30. PMID: 32679492.
[8] Sanja Bojic, Matias M. Falco, Petra Stojkovic, Biljana Ljujic, Marina Gazdic Jankovic, Lyle Armstrong, Nebojsa Markovic, Joaquin Dopazo, Majlinda Lako, Roman Bauer, Miodrag Stojkovic, Platform to study intracellular polystyrene nanoplastic pollution and clinical outcomes, Stem Cells, Volume 38, Issue 10, October 2020, Pages 1321–1325, https://doi.org/10.1002/stem.3244
[9] Yunxiao Yang, Enzehua Xie, Zhiyong Du, Zhan Peng, Zhongyi Han, Linyi Li, Rui Zhao, Yanwen Qin, Mianqi Xue, Fengwang Li, Kun Hua, and Xiubin Yang Environmental Science & Technology 2023 57 (30), 10911-10918 DOI: 10.1021/acs.est.2c07179
[10] Marfella R, Prattichizzo F, Sardu C, Fulgenzi G, Graciotti L, Spadoni T, D'Onofrio N, Scisciola L, La Grotta R, Frigé C, Pellegrini V, Municinò M, Siniscalchi M, Spinetti F, Vigliotti G, Vecchione C, Carrizzo A, Accarino G, Squillante A, Spaziano G, Mirra D, Esposito R, Altieri S, Falco G, Fenti A, Galoppo S, Canzano S, Sasso FC, Matacchione G, Olivieri F, Ferraraccio F, Panarese I, Paolisso P, Barbato E, Lubritto C, Balestrieri ML, Mauro C, Caballero AE, Rajagopalan S, Ceriello A, D'Agostino B, Iovino P, Paolisso G. Microplastics and Nanoplastics in Atheromas and Cardiovascular Events. N Engl J Med. 2024 Mar 7;390(10):900-910. doi: 10.1056/NEJMoa2309822. PMID: 38446676.
[11] Liu S, Wang C, Yang Y, Du Z, Li L, Zhang M, Ni S, Yue Z, Yang K, Wang Y, Li X, Yang Y, Qin Y, Li J, Yang Y, Zhang M. Microplastics in three types of human arteries detected by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). J Hazard Mater. 2024 Feb 21;469:133855. doi: 10.1016/j.jhazmat.2024.133855. Epub ahead of print. PMID: 38428296.
[12] Sun M, Ding R, Ma Y, Sun Q, Ren X, Sun Z, Duan J. Cardiovascular toxicity assessment of polyethylene nanoplastics on developing zebrafish embryos. Chemosphere. 2021 Nov;282:131124. doi: 10.1016/j.chemosphere.2021.131124. Epub 2021 Jun 8. PMID: 34374342.
[13] Lett Z, Hall A, Skidmore S, Alves NJ. Environmental microplastic and nanoplastic: Exposure routes and effects on coagulation and the cardiovascular system. Environ Pollut. 2021 Dec 15;291:118190. doi: 10.1016/j.envpol.2021.118190. Epub 2021 Sep 18. PMID: 34563850.
[14] Barguilla I, Domenech J, Ballesteros S, Rubio L, Marcos R, Hernández A. Long-term exposure to nanoplastics alters molecular and functional traits related to the carcinogenic process. J Hazard Mater. 2022 Sep 15;438:129470. doi: 10.1016/j.jhazmat.2022.129470. Epub 2022 Jun 27. PMID: 35785738.
[15] Greven AC, Merk T, Karagöz F, Mohr K, Klapper M, Jovanović B, Palić D. Polycarbonate and polystyrene nanoplastic particles act as stressors to the innate immune system of fathead minnow (Pimephales promelas). Environ Toxicol Chem. 2016 Dec;35(12):3093-3100. doi: 10.1002/etc.3501. Epub 2016 Jul 18. PMID: 27207313.
[16] Leslie HA, van Velzen MJM, Brandsma SH, Vethaak AD, Garcia-Vallejo JJ, Lamoree MH. Discovery and quantification of plastic particle pollution in human blood. Environ Int. 2022 May;163:107199. doi: 10.1016/j.envint.2022.107199. Epub 2022 Mar 24. PMID: 35367073.
[17] Jiang L, Ye Y, Han Y, Wang Q, Lu H, Li J, Qian W, Zeng X, Zhang Z, Zhao Y, Shi J, Luo Y, Qiu Y, Sun J, Sheng J, Huang H, Qian P. Microplastics dampen the self-renewal of hematopoietic stem cells by disrupting the gut microbiota-hypoxanthine-Wnt axis. Cell Discov. 2024 Mar 29;10(1):35. doi: 10.1038/s41421-024-00665-0. PMID: 38548771; PMCID: PMC10978833.
[18] Zhang Y, Yin K, Wang D, Wang Y, Lu H, Zhao H, Xing M. Polystyrene microplastics-induced cardiotoxicity in chickens via the ROS-driven NF-κB-NLRP3-GSDMD and AMPK-PGC-1α axes. Sci Total Environ. 2022 Sep 20;840:156727. doi: 10.1016/j.scitotenv.2022.156727. Epub 2022 Jun 14. PMID: 35714743.
[19] Ye J, Qiu W, Pang X, Su Y, Zhang X, Huang J, Xie H, Liao J, Tang Z, Chen Z, Li F, Xiong Z, Su R. Polystyrene nanoplastics and cadmium co-exposure aggravated cardiomyocyte damage in mice by regulating PANoptosis pathway. Environ Pollut. 2024 Apr 15;347:123713. doi: 10.1016/j.envpol.2024.123713. Epub 2024 Mar 8. PMID: 38462200.
[20] Wei J, Wang X, Liu Q, Zhou N, Zhu S, Li Z, Li X, Yao J, Zhang L. The impact of polystyrene microplastics on cardiomyocytes pyroptosis through NLRP3/Caspase-1 signaling pathway and oxidative stress in Wistar rats. Environ Toxicol. 2021 May;36(5):935-944. doi: 10.1002/tox.23095. Epub 2021 Jan 6. PMID: 33404188.
[21] Zhang T, Yang S, Ge Y, Wan X, Zhu Y, Yang F, Li J, Gong S, Cheng Y, Hu C, Chen Z, Yin L, Pu Y, Liang G. Multi-dimensional evaluation of cardiotoxicity in mice following respiratory exposure to polystyrene nanoplastics. Part Fibre Toxicol. 2023 Nov 29;20(1):46. doi: 10.1186/s12989-023-00557-3. PMID: 38031128; PMCID: PMC10685678.
[22] Liu S, Wang C, Yang Y, Du Z, Li L, Zhang M, Ni S, Yue Z, Yang K, Wang Y, Li X, Yang Y, Qin Y, Li J, Yang Y, Zhang M. Microplastics in three types of human arteries detected by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). J Hazard Mater. 2024 Feb 21;469:133855. doi: 10.1016/j.jhazmat.2024.133855. Epub ahead of print. PMID: 38428296.
[23] Wang Bo. Nanoplastic Particles Promote Atherosclerosis by Inducing Long-Chain Acylcarnitine Accumulation and MARCO Expression [D]. Southern Medical University, 2023. DOI:10.27003/d.cnki.gojyu.2023.001174.
[24] Li B, Ding Y, Cheng X, Sheng D, Xu Z, Rong Q, Wu Y, Zhao H, Ji X, Zhang Y. Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice. Chemosphere. 2020 Apr;244:125492. doi: 10.1016/j.chemosphere.2019.125492. Epub 2019 Nov 27. PMID: 31809927.
[25] Zhang Z, Chen W, Chan H, Peng J, Zhu P, Li J, Jiang X, Zhang Z, Wang Y, Tan Z, Peng Y, Zhang S, Lin K, Yung KK. Polystyrene microplastics induce size-dependent multi-organ damage in mice: Insights into gut microbiota and fecal metabolites. J Hazard Mater. 2024 Jan 5;461:132503. doi: 10.1016/j.jhazmat.2023.132503. Epub 2023 Sep 6. PMID: 37717443.
[26] Chang W, Lin J, Dong J, Li D. Pyroptosis: an inflammatory cell death implicates in atherosclerosis. Med Hypotheses. 2013 Sep;81(3):484-6. doi: 10.1016/j.mehy.2013.06.016. Epub 2013 Jul 4. PMID: 23831306.
[27] Cary CM, Seymore TN, Singh D, Vayas KN, Goedken MJ, Adams S, Polunas M, Sunil VR, Laskin DL, Demokritou P, Stapleton PA. Single inhalation exposure to polyamide micro and nanoplastic particles impairs vascular dilation without generating pulmonary inflammation in virgin female Sprague Dawley rats. Part Fibre Toxicol. 2023 Apr 23;20(1):16. doi: 10.1186/s12989-023-00525-x. PMID: 37088832; PMCID: PMC10122824.
[28] Manuel P, Almeida M, Martins M, Oliveira M. Effects of nanoplastics on zebrafish embryo-larval stages: A case study with polystyrene (PS) and polymethylmethacrylate (PMMA) particles. Environ Res. 2022 Oct;213:113584. doi: 10.1016/j.envres.2022.113584. Epub 2022 Jun 16. PMID: 35718161.
[29] Zhang T, Yang S, Ge Y, Wan X, Zhu Y, Yang F, Li J, Gong S, Cheng Y, Hu C, Chen Z, Yin L, Pu Y, Liang G. Multi-dimensional evaluation of cardiotoxicity in mice following respiratory exposure to polystyrene nanoplastics. Part Fibre Toxicol. 2023 Nov 29;20(1):46. doi: 10.1186/s12989-023-00557-3. PMID: 38031128; PMCID: PMC10685678.
[30] Mai L, Bao LJ, Shi L, Wong CS, Zeng EY. A review of methods for measuring microplastics in aquatic environments. Environ Sci Pollut Res Int. 2018 Apr;25(12):11319-11332. doi: 10.1007/s11356-018-1692-0. Epub 2018 Mar 13. PMID: 29536421.
[31] Shim WJ, Song YK, Hong SH, Jang M. Identification and quantification of microplastics using Nile Red staining. Mar Pollut Bull. 2016 Dec 15;113(1-2):469-476. doi: 10.1016/j.marpolbul.2016.10.049. Epub 2016 Oct 27. PMID: 28340965.
[32] Mistri M, Sfriso AA, Casoni E, Nicoli M, Vaccaro C, Munari C. Microplastic accumulation in commercial fish from the Adriatic Sea. Mar Pollut Bull. 2022 Jan;174:113279. doi: 10.1016/j.marpolbul.2021.113279. Epub 2021 Dec 24. PMID: 34959102.
[33] Cui Peng, Wei Xiaoxiao, Liu Weili, et al. Rapid Identification of Plastic Products by Handheld Raman Spectroscopy [J]. Analytical Instrumentation, 2023(05):48-55.
[34] Xue Xiaoyi, Shen Zhixia. Research Progress on Main Sources and Detection Methods of Microplastics [J]. Plastic Packaging, 2023, 33(06):39-45.
[35] Errico S, Moggio M, DianoN, Portaccio M, Lepore M. Different experimental approaches for Fourier-transform infrared spectroscopy applications in biology and biotechnology: A selected choice of representative results. Biotechnol Appl Biochem. 2023 Jun;70(3):937-961. doi: 10.1002/bab.2411. Epub 2022 Nov 21. PMID: 36342452.
[36] Teboul E, Orihel DM, Provencher JF, Drever MC, Wilson L, Harrison AL. Chemical environment identification of microplastics ingested by Red Phalaropes (Phalaropus fulicarius) using Fourier Transform Infrared spectroscopy. Mar Pollut Bull. 2021 Oct;171:112640. doi: 10.1016/j.marpolbul.2021.112640. Epub 2021 Jul 7. PMID: 34245993.
[37] Zhang Xiangnan. Development and Application of Pyrolysis-Mass Spectrometry for Microplastic Detection Technology [D]. Harbin Institute of Technology, 2021. DOI:10.27061/d.cnki.ghgdu.2021.000335.
[38] Fischer M, Scholz-Böttcher BM. Simultaneous Trace Identification and Quantification of Common Types of Microplastics in Environmental Samples by Pyrolysis-Gas Chromatography-Mass Spectrometry. Environ Sci Technol. 2017 May 2;51(9):5052-5060. doi: 10.1021/acs.est.6b06362. Epub 2017 Apr 21. PMID: 28391690.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Advances in Life Science for Adolescents

This work is licensed under a Creative Commons Attribution 4.0 International License.